Multivalent functions and QK spaces
نویسنده
چکیده
We give a criterion for q-valent analytic functions in the unit disk to belong to Q K , a Möbius-invariant space of functions analytic in the unit disk in the plane for a nonde-creasing function K : [0, ∞) → [0, ∞), and we show by an example that our condition is sharp. As corollaries, classical results on univalent functions, the Bloch space, BMOA, and Q p spaces are obtained. 1. Introduction. For analytic univalent function f in the unit disk ∆, Pommerenke [8] proved that f ∈ Ꮾ if and only if f ∈ BMOA, which easily implies a result of Baernstein II [4] about univalent Bloch functions: if g(z) ≠ 0 is an analytic univalent function in ∆, then log g ∈ BMOA. We know that Pommerenke's result mentioned above was generalized to Q p spaces for all p, 0 < p < ∞, by Aulaskari et al. (cf. [2, Theorem 6.1]). Their result can be stated as follows.
منابع مشابه
On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator
Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.
متن کاملOn meromorphically multivalent functions defined by multiplier transformation
The purpose of this paper is to derive various useful subordination properties and characteristics for certain subclass of multivalent meromorphic functions, which are defined here by the multiplier transformation. Also, we obtained inclusion relationship for this subclass.
متن کاملProperties of multivalent functions associated with certain integral operator
Let A(p) denote the class of functions which are analytic in the open unit disk U. By making use of certain integral operator,we obtain some interesting properties of multivalent analytic functions.
متن کاملSome properties of extended multiplier transformations to the classes of meromorphic multivalent functions
In this paper, we introduce new classes $sum_{k,p,n}(alpha ,m,lambda ,l,rho )$ and $mathcal{T}_{k,p,n}(alpha ,m,lambda ,l,rho )$ of p-valent meromorphic functions defined by using the extended multiplier transformation operator. We use a strong convolution technique and derive inclusion results. A radius problem and some other interesting properties of these classes are discussed.
متن کاملSome properties for a class of meromorphically multivalent functions with linear operator
Making use of a linear operator, which is defined here by means of the Hadamard product (or convolution), we define a subclass $mathcal {T}_{p}(a, c, gamma, lambda; h)$ of meromorphically multivalent functions. The main object of this paper is to investigate some important properties for the class. We also derive many results for the Hadamard roducts of functions belong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004